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We study the Fourier relationship between angle and orbital angular momentum of entangled photons.
Spatial light modulators allow us to define and control the spatial mode measurement state. We observe strong
quantum correlations, establishing that angular position and momentum distributions between the photons are
related as conjugate Fourier pairs.
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I. INTRODUCTION

Experiments with correlated photon pairs have played an
essential role in demonstrating the nonlocal nature of quan-
tum mechanics, confirming the existence of entanglement in
nature �1,2�. Today entanglement is very much a resource to
be exploited, with practical applications in NMR �3� and
exciting possibilities in quantum information processing �4�.

The first entanglement experiments were based on the
correlations in the polarizations of photon pairs produced
from a cascade transition �1,2�. More recent experiments
have exploited photon pairs generated in parametric down
conversion where phase matching induces wave-vector-
position entanglement �5,6�. These momentum-position rela-
tionships extend entanglement phenomena beyond polariza-
tion to include continuous variables. For example, placing a
diffraction slit in one arm produces “ghost diffraction” where
the slit diffraction pattern is observed in neither of the beams
independently, but only in their coincidence count �7�. It is a
feature of entangled systems that they exhibit correlations
not just for one property, but also in a conjugate variable. A
recent demonstration of the entanglement between down-
converted photon pairs is the measurement of both the posi-
tion and momentum correlations, thus realizing the original
Einstein-Podolsky-Rosen �EPR� Gedankenexperiment �8�.

Apart from polarization, i.e., spin angular momentum,
light also possesses an orbital angular momentum �OAM�,
�� per photon arising from a helical phase structure,
exp�i���, of the beam �9,10�. This angular momentum is
independent of the polarization of the beam. In 2001, corre-
lations were observed in the measured OAM states of down-
converted photon pairs �11�, confirming that the OAM of
light is a property of single photons �12�. More recent ex-
periments have shown that these correlations persist for non-
integer OAM states �13�.

We explore the relationship between OAM and its conju-
gate variable, angular position �14�. Given a Fourier relation-
ship between OAM and angular position �15,16�, we can
write the amplitudes of the OAM states, A�, and the azi-
muthal dependence of the corresponding complex beam am-

plitude, ����, as generation functions of each other,

A� =
1

�2�
�

−�

�

����exp�− i���d� , �1�

���� =
1

�2�
�

�=−�

�

A� exp�i��� . �2�

In this article, we establish that this relationship applies not
just to a single classical light beam but also to correlations
between down-converted photon pairs, i.e., that setting the
angular mode of one photon dictates the OAM distribution of
the other. This effect may be termed “angular ghost diffrac-
tion.”

While both linear position and momentum are continuous
and unbounded variables, angle is 2� periodic. This leads to
a natural quantization of angular momentum, and because of
the bounded nature of the angular variable, care is required
in calculating the angular uncertainty. Nevertheless, it has
been possible to derive a rigorous uncertainty relation di-
rectly from the Fourier relationship between angular momen-
tum and angular position �15–18�.

II. MEASURING SINGLE-PHOTON OAM

Single-photon detectors can be used with polarizing beam
splitters and wave plates to discriminate between any two
orthogonal polarization states. The efficient measurement of
OAM is not so straightforward. Spin, orbital, and total angu-
lar momentum can be measured interferometrically �19�, but
to cover many states is technically complicated. More con-
veniently OAM states can be measured using a “forked dif-
fraction grating” �i.e., hologram� �20� to selectively couple a
specific OAM state into a single-mode fiber �11�. Only a
single OAM state can be measured at any one time, but the
technique is sufficient for experiments that do not require a
high quantum yield. Rather than using interchangeable holo-
grams, one can use spatial light modulators �SLMs� to imple-
ment the various holograms, thereby easing the alignment
and automation of such experiments �21,22�.*m.padgett@physics.gla.ac.uk
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III. THEORY

Each of the down-converted beams is spatially incoherent
�23� and, in terms of its OAM, has a distribution of states
symmetric about �=0 �24�. The width of this distribution is
set by the size of the pump beam with respect to the size of
the OAM states, which scales with �� �25�. It follows that
the count rate from a single detector as a function of � is a
similarly broad function �26�. The coincidence count rate C
is proportional to the overlap between the transverse mode
amplitudes of the two down-converted beams A and B with
that of the pump �P� �27�,

C �
�	�A�B�

P
*dA�2

�	��A�
P
*�2dA	��B�

P
*�2dA

. �3�

For a planar-waved pump beam, �P=0, with a diameter
larger than the back-projected down-converted beams, the
coincidence count reduces to the simpler form

C � 
� �A�BdA
2

. �4�

For OAM states of the two down-converted beams that are
within a few degrees of being collinear �28� this becomes

C � 
� �A�r�exp�i�A���B�r�exp�i�B��rdrd�
2

, �5�

which, due to the orthogonality of OAM states, is nonzero
only when �A+�B=0.

If a Fourier relationship between angle and OAM is valid
for photon pairs, then an aperture with a transmission that is
solely a function of its azimuthal angle inserted into optical
arm B should create a nonzero coincidence rate with respect
to a range of �A as measured in arm A. Such an aperture can
be expressed as the sum of its angular harmonics with Fou-
rier coefficients Bn �15�,

M��� = �
n=−�

�

Bn exp�in�� . �6�

Combining multiple apertures to give an m-fold rotationally
symmetric pattern means that Bn is nonzero only if n is an
integer multiple of m. For hard-edged apertures, with an
open segment width �, M���=1 for −� /2��+2�N /m
	� /2 and M���=0 otherwise. These nonzero Bn compo-
nents are

Bn=Nm =
m�

2�
sinc�n�

2
� . �7�

The action of this mask on an OAM eigenstate produces a
distribution of OAM values with amplitudes for the induced
change in � given by the Bn. As the individual light beams
are spatially incoherent, this distribution is not recorded in
the single channel counts. OAM conservation requires that if
we pass one of the down-converted beams through the mask
and then measure the OAM for both, we should always find
that the sum of the recorded OAM values is an integer mul-
tiple of m. More specifically, the coincidence count will take
the form

C�A=Nm � 
m�

2�
sinc��A�

2
�
2

. �8�

For the special case of equally sized open and closed
segments ��=� /m� we have

C�A=Nm � 
 1

2
sinc��A�

2m
�
2

. �9�

In nonlocal experiments of this type, the coincidence
count rate can be predicted by “back projection” �29� or “ret-
rodiction” �30� techniques. One of the detectors is considered
to be a source of photons which propagate back through the
optical components of one optical arm to be phase-
conjugately reflected by the nonlinear crystal, and transmit-
ted along the other optical arm to the second detector. The
probability of detection at this second detector is propor-
tional to the predicted coincidence count rate of the true
quantum experiment. However, this retrodiction is purely a
predictor of outcome, not a mechanism, and within this back
projection approach the detector events are not coincident.

IV. EXPERIMENTAL APPARATUS

Figure 1 shows a schematic diagram of the experimental
apparatus. The down-conversion source is a frequency-
tripled, mode-locked, Nd:YAG laser �Excyte� with a pulse
repetition frequency of 100 MHz and an average power of
150 mW at 355 nm. The 2 mm diameter collimated pump
beam is normally incident on a 3 mm long crystal of BBO,
cut for frequency degenerate type-1 noncollinear phase
matching with a semicone angle for the down-converted
beams of 4°. The single photon detection is by avalanche
photodiodes �Perkin Elmer� with quantum efficiencies of
about 60%, both connected to single mode fibers. The input
facets of the fibers are imaged, with a magnification of ap-
proximately 20:1, using high quality 60 mm focal length
lenses to overlap with each other and the pump beam at the
output facet of the crystal. The transistor-transistor logic out-
puts of the two detectors are each counted independently and
their coincidence counts are recorded �National Instruments
PCI-6602�. In both of the down-converted arms, electrically
addressed, phase-only SLMs �Hamamatsu� are incorporated,

FIG. 1. �Color online� Experimental apparatus. A frequency
tripled Nd:yttrium-aluminum-garnet �Nd:YAG� laser at 355 nm is
incident on a beta barium borate �BBO� crystal producing photon
pairs at 710 nm. Signal and idler photons are coupled using single
mode fiber to avalanche photodiodes. Both the single channel and
coincidence count rates are recorded as functions of the hologram
design displayed on the spatial light modulator�s�.
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on which various holograms can be displayed, thereby set-
ting the measurement state of the detected photons. Both the
single channels and coincidence counts are recorded as a
function of the hologram designs.

The hologram designs in this work use a modulation of
the phase depth so that the phase-only SLM can impart both
phase and intensity modulation to the diffracted light �31,32�.
The hologram design for measuring the OAM state is the
standard �-forked diffraction grating. The angular mask is
obtained as the product of an �=0 hologram with the m-fold
rotationally symmetric mask, which can be either an inten-
sity or phase mask �see Fig. 1�.

V. EXPERIMENTAL RESULTS

Figure 2 shows the measured single channel and coinci-
dence counts for the case that no angular mask was present
in the optical path B. The single channel �A� counts reflect
the efficiency of the down-conversion process to generate
different OAM modes which decreases with increasing ���.
The single count rate in channel �B� of course is not affected
by the SLM in channel �A� and remains constant. The count
rate on the two single channels was of order 25 000 s−1. For
�A=0 the coincidence count rate was approximately 750 s−1,
implying an overall quantum detection efficiency of 3% and
a photon pair rate of about 106 s−1, meaning that the contri-
bution to the coincidence count from multiple photon pairs
can be ignored. The gate time of the detection electronics
and coincidence counting was 25 ns, which for the observed
single channel count rates gives an accidental, i.e., nonquan-
tum coincidence rate of 3 s−1. The hologram in optical path
A could then be updated and the various count rates recorded
as a function of different � states.

The SLM B was then modified to incorporate an annular,
m=twofold rotationally symmetric intensity mask, and a
similar scan of the � state was completed. Figure 3 shows
our results for single channel �A� and coincidence channel
counts as functions of �A. Of particular significance is that
whereas the single channel count has a broad spectrum, the

coincidence count shows noticeable sidebands at �A= 
2.
Note that the sinc envelope suppresses any coincidence
counts at �A= 
4, as expected from Eq. �9�. Further side-
bands in the coincidence counts would be expected at �A
= 
6, but were barely observable above the background
noise.

The intensity aperture implemented on SLM B can be
replaced with a phase aperture where alternate sectors induce
a phase delay of �. The equal mark-space ratio of the
�-phased aperture means that Bn=0=0 and hence that the
coincidence count for �A=0 is suppressed. Figure 4 shows
the coincidence and single channel �A� counts for an m=2
phase mask on SLM B and OAM state measurement on SLM
A, as a function of �A. We see clearly a high coincidence
count rate for �A= 
2, whereas the single channel �A� count
shows no such peaks.

VI. CONCLUSIONS

We have established that the Fourier relationship between
angular position and OAM holds for entangled photon pairs
produced by a down-conversion source. Confirming this

FIG. 2. �Color online� Coincidence counts �red; dark gray in
printed version� and single channel counts �gray� in channel �A� as
functions of �A for the case that no aperture is implemented on
SLM B. Note that the distribution of detected � states for the single
channel �A� is broad, but the coincidence count rate is only substan-
tial for �A=0. The single channel count rate in channel �B� is inde-
pendent of �A=0 �not shown�.

FIG. 3. �Color online� Coincidence counts �red; dark gray in
printed version� and single channel counts �gray� in channel �A� as
functions of �A for the case that a twofold rotationally symmetric
intensity aperture �m=2� is implemented on SLM B. Note that the
distribution of detected � states for the single channel is broad, but
the coincidence count shows distinct sidebands for �A= 
2.

FIG. 4. �Color online� As in Fig. 3, but for a twofold rotationally
symmetric phase aperture implemented on SLM B. The coincidence
count shows distinct sidebands for �A= 
2 and a suppression of the
count rate at �A=0.
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Fourier relationship between pairs of separated photons has
implications for the validity of an angular form of the
Heisenberg uncertainty relationship �18�, which is itself a
direct consequence of the Fourier relationship. A demonstra-
tion of angular entanglement supports the quantum nature of
the azimuthal coordinate itself �14�. Although the separation
of our detectors was too small with respect to our gate times
for our results to constitute absolute evidence of nonlocal
correlations, our experimental configuration and timing con-
dition are similar to that used in many EPR experiments. Our

results suggest that an experimental demonstration of the an-
gular EPR paradox �33� should be possible.
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